The compound you've described, **2-(1,3-benzothiazol-2-ylamino)-5-spiro[1,6,7,8-tetrahydroquinazoline-4,1'-cyclopentane]one**, is a complex organic molecule with potential biological activity. It contains several functional groups that are commonly found in pharmacologically active compounds, including:
* **Benzothiazole ring:** This heterocyclic ring system is found in a variety of drugs, including antibacterials, antifungals, and antivirals.
* **Quinazoline ring:** Another heterocyclic ring system known for its presence in drugs with diverse pharmacological effects.
* **Amide group:** This group is crucial for hydrogen bonding interactions with biological targets.
* **Spirocyclic system:** The spiro ring system adds to the compound's structural complexity and might influence its biological activity.
However, it's important to note that **this compound is not commonly known or well-studied.** There is no readily available information about its specific biological properties, potential uses, or its significance in research.
**Why might this compound be important for research?**
* **Novel chemical scaffold:** The combination of different functional groups and the spiro ring system suggests it might exhibit unique properties and interact with biological targets in new ways.
* **Potential for pharmacological activity:** Its structural features could be associated with a variety of biological activities, including anti-inflammatory, anti-cancer, or antiviral properties.
* **Lead compound for drug discovery:** This compound could serve as a starting point for developing new drugs by exploring its structure-activity relationships and synthesizing derivatives.
However, further research and experimentation are needed to determine the true importance of this compound and its potential applications.
**If you are interested in exploring this compound further:**
* **Consult scientific databases:** Search for information on this compound in databases like PubChem, ChemSpider, or SciFinder.
* **Contact research labs:** Reach out to researchers working in medicinal chemistry or related fields to inquire about their knowledge of this compound.
* **Perform experimental studies:** Conducting laboratory experiments could help elucidate the biological properties and potential applications of this molecule.
Remember, without specific experimental data and scientific literature, it's difficult to definitively say why this compound is important for research. It's a unique molecule with potential, but further investigations are necessary to explore its potential applications.
ID Source | ID |
---|---|
PubMed CID | 2957910 |
CHEMBL ID | 1366889 |
CHEBI ID | 109855 |
Synonym |
---|
MLS000050144 |
smr000077242 |
2'-(1,3-benzothiazol-2-ylamino)-7',8'-dihydro-1'h-spiro[cyclopentane-1,4'-quinazolin]-5'(6'h)-one |
STK167364 |
CHEBI:109855 |
AKOS002234529 |
MLS002546739 |
2-(1,3-benzothiazol-2-ylamino)spiro[1,6,7,8-tetrahydroquinazoline-4,1'-cyclopentane]-5-one |
HMS2430N20 |
CHEMBL1366889 |
2-(1,3-benzothiazol-2-ylamino)-5-spiro[1,6,7,8-tetrahydroquinazoline-4,1'-cyclopentane]one |
Q27189168 |
sr-01000279609 |
SR-01000279609-1 |
669718-51-8 |
ml152 analog |
Class | Description |
---|---|
quinazolines | Any organic heterobicyclic compound based on a quinazoline skeleton and its substituted derivatives. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, HADH2 protein | Homo sapiens (human) | Potency | 35.7168 | 0.0251 | 20.2376 | 39.8107 | AID886; AID893 |
Chain B, HADH2 protein | Homo sapiens (human) | Potency | 35.7168 | 0.0251 | 20.2376 | 39.8107 | AID886; AID893 |
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 22.3872 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
thioredoxin reductase | Rattus norvegicus (Norway rat) | Potency | 21.6794 | 0.1000 | 20.8793 | 79.4328 | AID588453; AID588456 |
ClpP | Bacillus subtilis | Potency | 28.1838 | 1.9953 | 22.6730 | 39.8107 | AID651965 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 23.1093 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 2.0255 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 31.6228 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
PINK1 | Homo sapiens (human) | Potency | 11.2202 | 2.8184 | 18.8959 | 44.6684 | AID624263 |
Parkin | Homo sapiens (human) | Potency | 11.2202 | 0.8199 | 14.8306 | 44.6684 | AID624263 |
lysosomal alpha-glucosidase preproprotein | Homo sapiens (human) | Potency | 39.8107 | 0.0366 | 19.6376 | 50.1187 | AID1466; AID2242 |
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1 | Homo sapiens (human) | Potency | 31.6228 | 0.0018 | 15.6638 | 39.8107 | AID894 |
geminin | Homo sapiens (human) | Potency | 20.5962 | 0.0046 | 11.3741 | 33.4983 | AID624296 |
neuropeptide S receptor isoform A | Homo sapiens (human) | Potency | 5.0119 | 0.0158 | 12.3113 | 615.5000 | AID1461 |
Neuronal acetylcholine receptor subunit alpha-4 | Rattus norvegicus (Norway rat) | Potency | 39.8107 | 3.5481 | 18.0395 | 35.4813 | AID1466 |
Neuronal acetylcholine receptor subunit beta-2 | Rattus norvegicus (Norway rat) | Potency | 39.8107 | 3.5481 | 18.0395 | 35.4813 | AID1466 |
Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) | Potency | 125.8920 | 3.9811 | 46.7448 | 112.2020 | AID720711 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
guanyl-nucleotide exchange factor activity | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
protein binding | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
cAMP binding | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
protein-macromolecule adaptor activity | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
small GTPase binding | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
cytosol | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
plasma membrane | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
membrane | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
hippocampal mossy fiber to CA3 synapse | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
plasma membrane | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |